2021年 | プレスリリース?研究成果
メラトニン受容体のシグナル伝達複合体の構造を解明 ? 睡眠や概日リズムの構造基盤の理解と睡眠薬の開発に貢献 ?
【本学研究者情報】
〇大学院薬学研究科 分子細胞生化学分野 准教授 井上飛鳥
研究室ウェブサイト
【発表のポイント】
- 睡眠薬ラメルテオンとGiタンパク質三量体(注1)が結合したメラトニン受容体(注2)MT1のシグナル伝達複合体(注3)の立体構造を解明することに成功しました。
- 受容体の活性化に重要なラメルテオンとの相互作用を特定しました。さらに、他のシグナル伝達複合体との構造比較から、Gタンパク質の共役選択性を特徴づける受容体の細胞内側の空間的な特徴を見出しました。
- 本研究は、メラトニン受容体を標的とする創薬開発に貢献するとともに、GPCR(注4)のシグナル伝達の初発段階であるGタンパク質共役選択性の理解につながります。
【概要】
睡眠は我々の生命維持に必須であり、ホルモンなど多様な情報伝達物質で制御されます。本研究で着目したメラトニン(注5)は特に睡眠の誘導で中心的な役割を果たし、その過程ではGPCRの一種であるメラトニン受容体とGiタンパク質三量体による神経細胞の活動を抑制するシグナルが重要となります。メラトニン受容体は睡眠障害に対する治療標的として注目され、2010年に不眠症治療薬ラメルテオン(商品名ロゼレム)が承認されています。そのため、メラトニン受容体を含むシグナル伝達複合体の構造決定は睡眠のメカニズムの原子レベルでの理解のみならず、より効果的な薬の開発に貢献します。近年メラトニン受容体の結晶構造が報告されましたが、これらは不活性型構造を示しており、メラトニン受容体の活性化に伴う構造変化やシグナル伝達因子であるGiタンパク質三量体と選択的に共役する機構は不明なままでした。
今回、東京大学大学院理学系研究科の濡木理 教授らのグループは、クライオ電子顕微鏡による単粒子解析法(注6)でメラトニン受容体MT1とGiタンパク質三量体で構成されるシグナル伝達複合体の立体構造を解明しました。さらに国内外の複数の研究室との共同研究の下で機能解析やバイオインフォマティクス解析を行い、受容体の活性化メカニズムやGiタンパク質三量体と選択的に結合する機構を明らかにしました。この研究成果により、睡眠障害の治療薬開発が促進されると共に、GPCRとGタンパク質との選択的なシグナル伝達に関する研究が進展することが期待されます。
本研究の成果は、英国夏時間8月5日(午後4時)に科学雑誌Nature Structural and Molecular Biology誌に掲載されました。
図1:メラトニン受容体MT1-Giシグナル伝達複合体の全体構造
左:メラトニン受容体MT1-Giシグナル伝達複合体の密度マップ。
右:密度マップに基づいて構築したメラトニン受容体MT1-Giシグナル伝達複合体の立体構造モデル。
【用語解説】
(注1)Giタンパク質三量体、Gタンパク質三量体:
Gタンパク質は、細胞内情報伝達に関わるGTP結合タンパク質であり、Gα、Gβ、Gγサブユニットの三量体によって構成され、活性化されたGPCR(注5)によって活性化されます。活性化されたGタンパク質三量体ではGDP-GTP交換反応が起き、GαとGβ-Gγの二つに解離します。解離したサブユニットが下流のシグナル伝達因子と結合し活性化することで、細胞に様々なシグナル応答が生じます。Gαサブユニットは大きくGs、Gi、Gq/11、G12/13の4種類に分別され、特にGiタンパク質三量体は、下流でアデニル酸シクラーゼの活性を阻害することで、抑制性のシグナルを伝達します。
(注2)メラトニン受容体:
メラトニン受容体は、低分子リガンドを結合して従来からの主な創薬標的であるクラス A GPCRに分類され、メラトニンと結合することで活性化状態となり、アデニル酸シクラーゼを不活性化する抑制性Gタンパク質三量体(Giタンパク質三量体)を選択的に活性化します。メラトニン受容体にはMT1とMT2の2つのサブタイプが存在し、主に脳の視交叉上核に発現するMT1が、特に睡眠の誘導で重要な役割を果たすことが知られています。
(注3)シグナル伝達複合体:
活性化したGPCRはGタンパク質三量体と結合することでシグナル伝達複合体を形成し、Gタンパク質三量体でのGDP-GTP交換反応が起きやすい立体構造に安定化されます。クライオ電子顕微鏡による単粒子解析法の発達によって、これまでに多くのGPCRシグナル伝達複合体の立体構造が報告されてきました。
(注4)GPCR(Gタンパク質共役受容体)、Giシグナル伝達受容体、Gsシグナル伝達受容体:
7本のαヘリックスで構成される膜タンパク質で、膜受容体タンパク質のなかで最大のファミリーを形成しています。N末端が細胞外、C末端が細胞内に存在し、細胞外領域で特定のリガンドが結合することで活性化し、細胞内のGタンパク質三量体を活性化することでシグナルを伝達します。体内で多様な生理作用の調節に重要な役割を果たすことから、既承認薬の30%以上がGPCRを標的にした薬剤になっています。これらのなかで、Giタンパク質三量体と共役するものをGiシグナル伝達受容体、Gsタンパク質三量体と共役するものをGsシグナル伝達受容体と呼びます。
(注5)メラトニン:
メラトニンは、トリプトファンを出発物質にセロトニンを経て、脳の松果体で合成されるホルモンです。メラトニンは1958年にLernerらが発見し、これまでの研究から、夜間に多く合成されて睡眠の誘導や概日リズムの調節に関与することが明らかになっています。こうした重要な生理現象に関与することから、メラトニンおよびメラトニン受容体(注2)は睡眠障害などの治療標的として注目されており、これまでメラトニンに類似した化合物が睡眠障害の治療薬として開発されてきました。
(注6)クライオ電子顕微鏡による単粒子解析法:
クライオ(超低温)電子顕微鏡を用いてタンパク質などの生体高分子試料を撮影し、多数の撮影画像を画像処理することで立体構造を再構成して、タンパク質などの生体高分子の立体構造を決定する手法です。液体窒素(-196℃)による冷却下でタンパク質などの生体高分子試料に対して電子線を照射し、試料の観察および撮影を行います。検出器などにおける目覚ましい技術革新によってタンパク質などの生体高分子の立体構造を高分解能で決定する手法として普及し、2017年には開発に貢献した海外の研究者三名にノーベル化学賞が贈られました。
問い合わせ先
(研究に関すること)
東北大学大学院薬学研究科分子細胞生化学分野
准教授 井上 飛鳥(いのうえ あすか)
TEL:022-795-6861
E-mail:iaska*tohoku.ac.jp(*を@に置き換えてください)
(報道に関すること)
東北大学大学院薬学研究科?薬学部 総務係
TEL:022-795-6801
E-mail:ph-som*grp.tohoku.ac.jp(*を@に置き換えてください)